Learning Spatially Localized, Parts-Based Representation
نویسندگان
چکیده
In this paper, we propose a novel method, called local nonnegative matrix factorization (LNMF), for learning spatially localized, parts-based subspace representation of visual patterns. An objective function is defined to impose localization constraint, in addition to the non-negativity constraint in the standard NMF [1]. This gives a set of bases which not only allows a non-subtractive (part-based) representation of images but also manifests localized features. An algorithm is presented for the learning of such basis components. Experimental results are presented to compare LNMF with the NMF and PCA methods for face representation and recognition, which demonstrates advantages of LNMF.
منابع مشابه
A Novel Spatially Confined Non-Negative Matrix Factorization for Face Recognition
In this paper, a novel method for facial representation called Spatially Confined Non-Negative Matrix Factorization (SFNMF) is presented. SFNMF aims to extract more spatially confined, parts-based representation from the NMF based representation by merely removing non-prominent region, and focalize on the salient feature. SFNMF derived a significant set of basis which allows a non-subtractive r...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملDiscovering hierarchical speech features using convolutional non-negative matrix factorization
Discovering a representation that reflects the structure of a dataset is a first step for many inference and learning methods. This paper aims at finding a hierarchy of localized speech features that can be interpreted as parts. Non-negative matrix factorization (NMF) has been proposed recently for the discovery of parts-based localized additive representations. Here, I propose a variant of thi...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملLearning the parts of objects by auto-association
Recognition-by-components is one of the possible strategies proposed for object recognition by the brain, but little is known about the low-level mechanism by which the parts of objects can be learned without a priori knowledge. Recent work by Lee and Seung (Nature 401 (1999) 788) shows the importance of non-negativity constraints in the building of such models. Here we propose a simple feedfor...
متن کامل